Clonación y células madre

En los últimos años la medicina y la biología han experimentado varias revoluciones que han ido cambiando de una modo espectacular e inimaginable tanto aspectos conceptuales básicos como el enfoque de las enfermedades y sus distintas opciones terapéuticas.

Uno de los recientes campos que está despertando mayor interés y que más rápidamente está avanzando, es la denominada Medicina Reparadora, basada principalmente en la manipulación de células madre (cuya obtención plantea ineludibles dilemas éticos) con la intención de regenerar tejidos y, de este modo, curar o tratar enfermos.

En un breve pero esclarecedor texto se sintetizan y definen los principales conceptos

1-Introducción: medicina reparadora

Algunos procesos patológicos (como el infarto de miocardio, la enfermedad de Parkinson, el Alzheimer, la diabetes tipo 1,...) son ocasionados por la degeneración, disfunción o muerte (aguda o crónica) de determinados tipos de células (miocardiocitos en el caso del infarto de corazón; neuronas dopaminérgicas en el caso de la enfermedad de Parkinson, células Beta del páncreas productoras de insulina en el caso de la diabetes mellitus tipo 1,...).

La medicina reparadora tiene por objetivo regenerar estas células, de modo que se recupere la función del tejido u órgano pertinente. Para lograrlo, es preciso practicar microtransplantes de células que, de un modo similar al transplante de un órgano entero (hígado, corazón, riñón,...) podrían suplantar la función de las células alteradas.

La mayor dificultad técnica de la medicina reparadora viene dada por la obtención de los tipos celulares deseados. Éste es también el punto que plantea mayores dilemas y discusiones éticas, tanto en la comunidad científica como entre la población en general.

Se han propuesto distintas vías de obtención de estas preciadas células; para simplificar el asunto desde el punto de vista ético, distinguiremos entre las células procedentes de embriones (cuya obtención supone la destrucción del embrión donante) y las células no procedentes de embriones (cuya extracción no supone, en principio, la destrucción de una vida humana ni la violación de sus derechos fundamentales).


2- Conceptos básicos de biología

Antes de continuar reflexionando sobre los aspectos éticos de las distintas vías de obtención de células madre, me parece conveniente aclarar algunos conceptos a fin de poder comprender mejor las posibles aplicaciones de las células madre y las diferencias entre las distintas fuentes de obtención de las mismas: en este apartado intentaré explicar brevemente el significado de totipotencialidad, pluripotencialidad, multipotencialidad, célula madre, célula indiferenciada, célula diferenciada y estirpe celular.

- Por totipotencia entendemos la capacidad de una célula de dar lugar a un organismo adulto entero: el paradigma de célula totipotente es el cigoto (óvulo recién fecundado) que, de un modo natural, da lugar al organismo adulto en su totalidad; también son células totipotentes las células del embrión en sus primeras divisiones (de modo que, si estas células se separan, cada una de ellas dará lugar a un embrión, obteniéndose, así, dos, tres cuatro o más individuos distintos (aunque todos ellos genéticamente idénticos); el mecanismo natural de gemelación ocurre de esta manera: por disyunción espontánea de las células del embrión en un estadio temprano; también se puede provocar artificialmente esta separación in vitro: en este caso hablamos de "paraclonación").

- La pluripotencia es la capacidad por parte de una célula de transformarse en cualquier tipo celular del organismo al que pertenece; estas células ya no son capaces de generar un organismo entero adecuadamente organizado y estructurado, pero sí pueden dar lugar a cualquiera de las células que lo integran. Naturalmente, toda célula totipotente es también pluripotente: es decir, una célula capaz de generar un organismo completo, puede también dar lugar a cualquiera de sus células por separado.

- El tercer tipo de célula es aquella que goza de multipotencia, es decir, de la capacidad de dar lugar a distintos tipos celulares, pero no a todos. Por ejemplo: algunas de las células que nosotros tenemos en la médula ósea se dividen continuamente y su descendencia da lugar a los distintos tipos celulares que circulan por la sangre (glóbulos rojos, glóbulos blancos y plaquetas); estas células reciben el nombre de células madre hematopoyéticas. Parece ser (por lo menos así se ha creído hasta ahora) que, en el organismo, estas células no se transforman ni en neuronas, ni en células musculares, ni óseas ni de cualquier otro tipo que no sea las células sanguíneas antes mencionadas: son, por tanto, células madre multipotentes pero no pluripotentes.

- Las células madre son aquellas que están especializadas en generar otras células: por sucesivas divisiones van dando lugar a células y más células que iniciarán el camino de la diferenciación. Casi por definición, las células madre son células indiferenciadas, aunque están altamente especializadas en realizar su función: generar células. También son células multi o pluripotentes: en principio una célula es tanto más pluripotente como más indiferenciada está y viceversa; del mismo modo, las células van perdiendo la capacidad de transformarse en distintos tipos celulares a medida que se diferencian (se van condenando a permanecer diferenciadas en un único y concreto tipo de célula).

- Las células diferenciadas son aquellas que están especializadas en llevar a cabo una determinada función y no pueden (ni su descendencia, en caso que puedan dividirse, tampoco puede) transformarse en otro tipo celular de diferente estirpe. La mayoría de las células diferenciadas tienen mermada en mayor o menor grado la capacidad de dividirse; estas células no se regeneran a partir de ellas mismas sino a partir de células madre indiferenciadas. La mayor parte de las células del organismo son células diferenciadas, por ejemplo: miocitos en los músculos y el corazón, linfocitos, conos y bastones de la retina, enterocitos del intestino, eritrocitos en la sangre,... El proceso de diferenciaciónes inducido y regulado por factores externos a la célula: el microambiente en que la célula vive le proporciona un conjunto de señales que inducen la transformación de una célula indiferenciada sin ninguna función especial en un determinado y concreto tipo de célula con una función específica.

- En algunas situaciones patológicas, las células se desdiferencian (también es posible inducir esta desdiferenciación en condiciones experimentales): muchas células tumorales malignas presentan esta característica: la desdiferenciación. Así, por ejemplo, entre las células de un tumor originado en el hígado, podemos encontrar algunas células tumorales que ya no es posible identificar como hepatocitos (células del hígado): han adquirido características de células más inmaduras, indiferenciadas que, precisamente y como ya hemos comentado, están especializadas en dividirse sin parar (no es una casualidad, por tanto, que estos cambios sean signos de malignidad, pues un tumor es tanto más maligno como más descontroladamente se dividen sus células, es decir, como más desdiferenciado está).

- Cuando hablamos de estirpes celulares nos referimos a los distintos tipos de células que integran el organismo: así, las células nerviosas, musculares, epidérmicas, óseas, cartilaginosas,... pertenecen cada una de ellas a estirpes celulares distintas. Dentro de cada estirpe, también hay distintos tipos de células; habitualmente, esta diversidad dentro de la misma estirpe se debe a los distintos estadios madurativos por los que una misma célula debe ir pasando o bien a los distintos grados de actividad o activación en que se puede encontrar una célula.

Todas las células somáticas del organismo tienen, en principio, el mismo contenido genético (el mismo genoma, que es la totalidad de genes de un organismo): lo que distingue las células de una estirpe de las células de otra estirpe no es, por tanto, la información genética de que disponen, sino la expresión diferencial de unos u otros genes (la expresión de los genes se traduce en la síntesis de proteínas; así, las células que expresan unos determinados genes, producen unas determinadas proteínas).

Nuestras células contienen muchísimos genes que codifican para otras tantas proteínas: algunas de ellas son necesarias para el funcionamiento básico de la célula y son producidas por todas las células del organismo; otras proteínas son necesarias para realizar funciones específicas que sólo deben darse en determinados tejidos; por ejemplo: las células de la capa más superficial de la piel (epidermis), producen queratina; esta proteína sólo se "fabrica" en este tipo de células y sólo debe hallarse en la piel; los genes que codifican para las distintas queratinas, sólo deben expresarse en las células epidérmicas. De igual modo, la actina y la miosina son proteínas implicadas en la contracción muscular: por lo tanto, sólo deben expresarse en grandes cantidades en aquellas células con capacidad contráctil. Paralelamente, las enzimas que se encargan de la producción de lactosa (el principal azúcar de la leche) sólo deben producirse en las células de la glándula mamaria durante la lactancia. Pero todas las células del organismo adulto (a excepción de algunas células de la línea germinal y otros casos especiales como los linfocitos) contienen toda la información genética necesaria para producir estas proteínas específicas.

Lo que determina qué genes expresa una célula y qué genes no expresa, no es el contenido genético de la célula sino factores externos al genoma: el microambiente en que vive la célula contiene gran cantidad y diversidad de señales que le indican y le ordenan cuál debe ser su patrón de comportamiento. Estas señales se denominan globalmente factores epigenéticos (que pueden ser factores externos a la célula o bien factores intracelulares).

El estudio de estos factores es crucial en el campo de la medicina reparadora, ya que si conocemos cuáles son las señales que inducen la transformación de una determinada célula en miocardiocito